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Abstract - An experiment called the Multispectral Airborne
Demonstration at Maricopa Agricultural Center (MADMAC) was
conducted to test the potential of airborne multispectral imagery

for farm management application. Results presented here address -
image pre-processing algorithms, value-added products, and.

proposals for future direction.

1. INTRODUCTION

Airborne multispectral imagery can provide the fine spatial
resolution, high temporal frequency and quick turnaround
required for farm management applications. To test the
potential for such applications, an experiment was conducted
to acquire a season-long set of high-resolution (2-m pixel),
multispectral videographic images over an agricultural area
with detailed supporting ground measurements.  This
experiment was called the Multispectral Airborne
Demonstration at the Maricopa Agricultural Center, or
MADMAC. :

Efforts were coordinated among scientists at three locations.
Engineers at Utah State University provided the airborne
remote sensing platform (flown at 2300 m and 1200 m), based
on a system developed by ARS scientists in Weslaco, Texas.
The video system consisted of three optical video cameras with
green (0.545-0.555 pm), red (0.645-0.655 pm) and near-
infrared (0.840-0.860 um) filters, and a thermal scanning video
filtered to 8.0-12.0 um. Managers at the University of Arizona
Maricopa Agricultural Center (MAC) provided their expertise
and access to the 770 hectare research and demonstration farm
located south of Phoenix, Arizona. Scientists from the U.S.
Water Conservation Laboratory made a variety of ground
measurements, including measurements of reflectance and
temperature of large target areas, emissivity, leaf and soil
temperature and reflectance, meteorological conditions, plant
biomass and green leaf area index (GLAI), plant light
interception and atmospheric optical depth. A total of fifteen
overflights were made, spanning the cotton growing season
from 12 April to 28 September, 1994. During each overpass,
we made a detailed visual survey of MAC, recording 875
separate observations of crop type, estimated plant height,
growth stage and percent crop cover, soil surface texture and
dampness, and presence of insect damage, weeds or other
anomalies.

Our initial research has focused on the development of

automated video image processing methods (to ensure rapid
image turnaround), and the retrieval of pertinent crop and soil
information from the multispectral images.

1. VIDEO IMAGE PRE-PROCESSING

Unprocessed airborne videographic images are characterized
by distortions that occur due to unique camera optics and the
attributes of the airborne platform. The interlacing of two
video “fields” to produce each video frame results in a
fractional, horizontal line shift of odd and even lines within the
frame that blurs feature edges. The multi-camera system
causes a misregistration of bands that varies throughout the
flight due to varying aircraft elevation, motion and shudder.
The wide field-of-view of most video cameras creates a non-
uniformity in brightness across the imagery due to sun- and
surface-induced bidirectional effects. Since most commercial
video cameras are not calibrated to values of radiance, it is
nearly impossible to use multitemporal images for monitoring
changes in vegetation and soil conditions. We developed
operational techniques to overcome these distortions and
limitations.

A. Geometric Rectification

Horizontal line shifting, forming a zig-zag pattern at feature
boundaries, varied sporadically in the MADMAC image
frames, making a simple constant line shift insufficient (Figure
1). Furthermore, the average shift was typically less than a
single pixel, requiring a fractional shift. We developed
software that scanned the image line by line and, at feature
boundaries, calculated the odd-line slopes and interline shifts.
Analysis of the statistical mean and standard deviation for
these net shifts were used to identify any shift anomalies,
which were discarded from the calculation of the shift for that
line. This was repeated for all sets of odd and even lines in the
image, and using the same statistical mean and standard
deviation calculations for the individual lines, outlying shifts
were discarded and replaced with interpolated values. This
algorithm provided an automated means for correcting
continuously-changing, fractional line shifts that appear in
videographic imagery (Mitchell et al., 1995).



Figure 1. Image of MAC with line shift problems at feature edges. Middle and right images show feature edges before and after line shift correction.

Band-to-band misregistration, caused by misalignment of
cameras and aircraft motion, is commonly corrected using
automated image correlation techniques, where the alignment
is determined by the location of the highest image

- correlation. This worked well for the red/green band
registration at MAC because the images were positively
correlated for all targets. However, the NIR band is both
positively and negatively correlated with the red or green
band, depending upon the feature. When an attempt was
made to correlate the NIR with the green or red images, the
positive and negative correlations for the different features
began to add destructively, causing an erroneous shift. This
problem was resolved by treating both images with a high
pass filter to identify changes related to feature boundaries
and then taking the absolute value of this change, thereby
providing only positive correlations between bands (Figure
2). Application of this algorithm to MAC images resulted in
exceptional band registration for all bands, including the
NIR, with a failure rate of less than 2% and processing time
of only 15 minutes for 80 sets of 3-band images (Mitchell et
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Fig. 2a. High pass feature correlations

al., 1995).
B. Normalization of Bidirectional Effect

Bidirectional effects are different from vignetting effects.
Vignetting is associated with the optics of the sensor system
and can be easily corrected with a camera-specific filtering
function; whereas bidirectional effects are related to the
surface optical properties, making correction more complex.
Bidirectional effects in video images are due to the
anisotropic nature of both vegetation and soil, and the
different radiation levels associated with shaded and sunlit
surfaces. The total field-of-view of the cameras used in
MADMAC was £12°; with this configuration, we found that
surface radiance of vegetated MAC fields varied by up to
24% due to bidirectional effects.

An automated procedure was proposed to normalize these
effects, based on inversion of a Bidirectional Reflectance
Distribution Function (BRDF) model. With multidirectional
measurements of a single target provided by multiple video
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frames, the BRDF model was inverted to produce model
input parameters. These parameters were used to run the
model and produce a set of coefficients for normalization of
the bidirectional effect in the original image (Figure 3). To
use this approach in practical operations, simultaneous multi-
directional measurements are needed.  Videographic
-imagery, with its fine spatial resolution and continuous frame
acquisitions, provides such multidirectional measurements
and, therefore, allows normalization of the bidirectional
effects without prior knowledge about the surface properties
(Qi et al., 1995).

Figure 3. Procedures for correcting bidirectional effects on
videographic imagery, where 0 is the view angle of the sensor.

C. Reflectance and Temperature Retrieval

To conduct quantitative, multitemporal analysis for farm
management applications, it was necessary to convert
MADMAC digital video data into values of surface
reflectance and temperature. We accomplished this with the
deployment of large (8 m x 8 m) reflectance tarps of low
(0.08) and high (0.64) reflectance (consistent over visible
and NIR wavelengths) during every aircraft overpass (Teillet
etal.,, 1987). After each flight, we retrieved the video digital
numbers associated with the center of the reflectance tarps
and computed a best fit between the surface reflectance of

“the tarps and the corresponding video digital number (setting
the intercept to zero). This approach allows a camera-
independent means for retrieval of reflectance factors from
video images at any time of day, without making on-site
measurements of atmospheric conditions. The results were
validated with on-site measurements of surface reflectance
in fallow and vegetated fields made with yoke-based
radiometers. Care should be taken in applying this method

to avoid using pixels associated with tarp edges since these
could be contaminated by atmospheric multiple scattering
effects. We found that, for these 8 m x 8 m tarps with
relatively clear-sky conditions, we needed 1-m resolution
data to obtain an uncontaminated measurement in the center
of the tarp.

To retrieve temperature from video digital numbers, we
used another approach. The thermal video camera provided
a conversion of digital number to temperature for each
frame; however, it was still necessary to account for
atmospheric attenuation and convert this “apparent”
temperature to surface temperature. In an analysis of eight
thermal images acquired at MAC in 1984, Moran (1990)
found that the relation between apparent temperature and
surface temperature was linear with a constant slope and an
offset that varied with total atmospheric water vapor. Thus,
the atmospheric correction ofthe MADMAC thermal images
was accomplished by first computing apparent temperature
based on sensor calibration. Then, a simple additive
correction was computed based on the difference between an
on-site measurement of surface temperature and the
temperature of the same site measured by the airborne
sensor. ' The results of this approach were validated by
comparison of retrieved temperature with on-site
measurements of temperature in fallow and vegetated fields.

11I. VALUE-ADDED PRODUCTS

Initially, three algorithms were tested to retrieve pertinent
crop and soil information from the multispectral images. The
products were 1) acrop change map computed by subtracting
one Vegetation Index (VI) image from a more recent one; 2)
a Water Deficit Index (WDI) map computed from thermal
and VI images to show actual to potential evaporation rates;
and 3) a Crop Stress Index (CSI) map, which is a special
application of the WDI concept to rank crop transpiration
rates.

A. Crop Change Map

Discrimination of crop growth and plant status is generally
accomplished by computing a ratio or linear combination of
visible and near-infrared reflectance, such as the Soil-
Adjusted Vegetation Index (Huete, 1988)

SAVI = (Pn-Pred)/ (PrmtPreaLI(1 L), ¢y
where L=0.5, and py and py,, are reflectance of the surface
in the near-infrared (NIR) and red spectrum (respectively).

"Vegetation indices (VIs), such as SAVI, have been found to

be sensitive to such vegetation parameters as green leaf area
index (GLALI), fraction absorbed photosynthetically active
radiation (fAPAR), and percent of the ground surface
covered by green vegetation (V,) (Jackson and Huete, 1991).
By subtracting one SAVI map from the SAVI map of the
preceding overflight, it is possible to map crop changes over



the period between flights. The result is a grey scale map
where black indicates decreases in vegetation, grey indicates
no change, and white indicates vegetation increases (Figure
4). This map gives the grower a visual method for
comparing rates of change among fields with similar
irrigation schedules or fertilizer applications, and thus,
determining optimum management options.

Figure 4. Map of crop change at MAC research farm. This
map shows the difference of SAVI on 6 and 12 July 1994,
where black indicates decreases in vegetation, white indicates
increases, and grey indicates no change.

B. Water Deficit Index Map

Algorithms based on the difference between remotely-
sensed surface temperature (T,) and air temperature (T,) have
been developed to assess soil salinity, soil waterlogging,
plant water potential and photosynthesis, as well as final
crop yield (see reviews by Jackson, 1987; Pinter et al., 1979).
The sensitivity of T,-T, to plant and soil moisture conditions
is related primarily to the heat loss associated with
evaporation and transpiration (Idso et al., 1986). However,
the sensitivity of T,-T, to evapotranspiration rate (ET) is still
confounded by variations in vegetation cover (V). Thus,
attempts have been made to combine VI and T,-T, in a single
index related to the water status of the plants and soil in the
field (Hatfield and Pinter, 1993). As the VI increases, the
‘range of possible T,-T, values for a given range of ET
decreases, resulting in a trapezoidal Vegetation
Index/Temperature (VIT) shape (Figure 5). Moran et al.
(1994) proposed that the Penman-Monteith equation could
be used to define the edges of the VIT trapezoid, thus
allowing computation of a Water Deficit Index (WDI)
defined by the ratio of AC/AB in Figure 5. This ratio is
directly related to the ratio of actual to potential ET, where

WDI = 1-(ET/ET)), )
and WDI=1 when ET=0 and WDI=0 when ET=ET,. The
result is a grey scale map where bright shades indicate ET is
close to zero and dark shades indicate ET is close to ET,
(Figure 6). The WDI has been found to be useful for such
farm management applications as monitoring efficacy of
irrigation applications and mapping soil moisture conditions
(Moran, 1994). '
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Figure 5. Water Deficit Index (WDI) Legend.
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Figure 6. Water Deficit Index Map of MAC on 12 July 1994.
WDI ranges from 0 to 1, where bright shades indicate WDI=1
(ET=0) and dark shades indicate WDI=0 (ET=ET,). The bright
white features in the upper right and lower right quadrants are
roofs and water bodies, respectively. The small white square in
the upper left quadrant is the 8 m x 8 m reflectance (0.64) tarp.



C. Crop Stress Index Map

A variation in the interpretation of the VIT trapezoid was
proposed to accentuate differences in crop stress and
compute a Crop Stress Index (CSI). In this interpretation,
sections of the VIT trapezoid that were most likely not
associated with crop stress were designated; that is:

» a wedge of the trapezoid close to the “cool”’edge was

associated with wet soil conditions;

» values below a designated threshold of VI were

associated with bare soil conditions; and

+ a wedge in the center of the trapezoid was associated

with well-watered vegetation (Figure 7).

In the resultant map (Figure 8), pixels associated with these
sections of the VIT trapezoid were colored black, and the
remaining section of the trapezoid was colored with a grey
scale ranging from dark to light associated with sufficiently-
watered to dry vegetation, respectively (Clarke et al., 1994).
This map of CSI could be interpreted by farmers for
determining when to irrigate and how much water to apply,
and identifying fields with insect infestation or other plant
health problems.

IV. FUTURE DIRECTION

Future work will be focused on two concepts: 1)
assimilation of infrequent, remotely-sensed information into
physically-based simulation models to provide accurate,
daily soil and crop information and 2) merging remotely-
sensed information with a decision support system (DSS) to
provide critical information for such. farm management
applications as irrigation scheduling, and chemical
applications.

Infrequent but accurate measurements of remotely-sensed
surface parameters (such as vegetation cover, soil moisture,
evaporation rate and plant vigor) could be supplemented with
daily simulated estimates of such parameters based on
physical models and meteorological information (Figure 9).
Operationally, an automated, numeric calibration procedure
would be used to assimilate periodic remotely-sensed
determinations of such parameters as plant green leaf area
index (GLAI) and surface evaporation rate into a simple
vegetation growth/soil water simulation model (e.g., Moran
et al., 1995). Thus, the high temporal frequency of the
simulation model would be combined with the high spatial
‘resolution and high accuracy of the remotely-sensed data to
provide daily, accurate maps of some surface parameters for
effective resource management.
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Figure 7. Crop Stress Index (CSI) Legend.

Figure 8. Crop Stress Index Map of MAC on 12 July 1994,
Areas associated with wet soil, bare soil and well-watered crops
are colored black; areas colored grey to white indicate

vegetation conditions ranging from sufficiently-watered to dry,
respectively.

To optimize the usefulness of remotely-sensed information
for such farm management decisions as irrigation scheduling
and chemical applications, it will be necessary to incorporate
this information in a decision support system (DSS) such as
DSS for Agrotechnology Transfer (DSSAT) (Hoogenboom
et al.,, 1994). This would allow new possibilities (e.g.,
growth modeling and yield forecasting) for the application of
multispectral data in site specific agricultural.
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Figure 9. Assimilation of remotely-sensed information in a vegetation growth/water balance model with an automated,
within-season calibration procedure (from Moran et al., 1995).
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