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Summary: CERES-Wheat is one in a family of crop simulation models used by the Decision Support System for Agrotechnology 
Transfer (DSSAT). Efforts have been devoted to integrating the DSSAT models with Geographic Information Systems (GIS) to 
account for spatial variation in soils and climate; however, validation and fine tuning of the models over large areas remain difficult 
and labor intensive tasks.  The relationship between multispectral data and biophysical plant characteristics such as green leaf area 
index (LAI) has been demonstrated; therefore, multispectral images have the potential to enhance the spatial predictive capability of 
existing growth models.  In order to take the first step in the process of linking remotely sensed data to existing growth models, 
CERES-Wheat was modified to accept observed LAI at defined times during the season.  Related parameters in the model (green plant 
area, senescent plant area, and total leaf weight) were also adjusted as a function of LAI.  The method was evaluated using three 
seasons of growth and meteorological data collected as part of the Free-Air CO2 Enrichment (FACE) experiment conducted near 
Maricopa, Arizona.  Initial results indicate that the proposed procedures are only effective when the growth stages of the model are 
properly predicted and leaf area index observations are available soon after the completion of leaf development.  Future efforts will 
focus on an iterative approach to adjusting the model’s parameters. 
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Introduction 

 
 The development of crop models has been progressing since the 1970s (e.g., Stapleton, 
1970; Young et al., 1979).  Since that time various models have been integrated with decision 
support systems for farm management (Lemmon, 1986; Jones et al., 1987).   Both the models and 
decision support systems were originally designed to simulate average field conditions; however, 
more recently tools have been developed to integrate growth models with geographic information 
systems (GIS) at either regional (Carbone et al., 1996; Papajorgi et al. 1994) or field scales (Paz 
et al., 1997).  One limitation to simulating spatial variations in crop production is the large 
amount of input data necessary to accurately prediction conditions.  Even when the input data is 
available, the model’s predictions may be inaccurate due to improper cultivar parameters or the 
inability of the model to account for certain stress parameters such as insects or weeds (Kenig et 
al., 1993).  The broad objective of this study is to determine how remotely sensed observations 
can be used to improve a growth model’s ability to simulate actual field scale variability.  
Dependable methods to forecast of the impact of variability in the crop canopy during the early 
season on yield would provide a new tool for producers to make informed decisions in the 
application of precision farming practices.  This paper is the first step in fulfilling that objective, 
by examining the level of improvement in a model’s predictions when leaf area indices are 
forced to match observations. 
 
Previous Applications of Remote Sensing and Growth Models 
 
 One of the strongest correlations between remotely sensed data and crop status is green 
leaf area index (LAI, the ratio of green leaf area per area of ground).  Near-infrared light (~ 0.8 to 
0.9 �m) is scattered by the leaf mesophyll, while red light (~ 0.68 �m) is strongly absorbed by 
chlorophyll (Wiegand et al., 1972).  The changes in canopy reflectance spectra for different 
stages of canopy development are illustrated in figure 1 for a cotton crop.  When compared to a 
bare soil, the growing canopy has a consistent increase in NIR reflectance and a corresponding 
decrease in red reflectance.  These spectral responses are the basis for many vegetation indices 
that involve some mathematical relationship between red and NIR reflectances, such as the ratio 
vegetation index (RVI): 

 RVI NIR
d

�

Re
, (1) 

 
 
or the normalized difference vegetation index (NDVI): 
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where NIR and Red are the reflected radiance in the near-infrared and red part of the spectrum, 
respectively. For a more complete description of vegetation indices see Jackson and Huete 
(1991).  Both of these indices have shown usefulness for monitoring the crop growth cycle 
(Gupta, 1993).  Several studies have documented relationships between reflectance and leaf area  
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index for various crops such as rice (Shibayama and Akiyama, 1989), wheat (Korobov and 
Railyan, 1993), sorghum (Wiegand and Richardson, 1984), and corn (Wiegand et al., 1990).  It 
should be noted that the accuracy of LAI estimates from remotely sensed data is subject to 
illumination conditions, view angle and site specific conditions such as row spacing (Qi et al., 
1995). 
 
 Wiegand et al. (1979) discuss the possibilities of using LAI as either an input or a 
calibration check for crop models.  They found that remotely sensed estimates of LAI for wheat 
was sufficient to provide information on crop development and growing conditions.  Lo Seen et 
al. (1995) discuss the possibilities of integrating vegetation indices with a grassland growth 
model.  The growth model, combined with a canopy reflectance and atmospheric model, is used 
to simulate top of atmosphere reflectance values.  These simulated values are then compared to 
satellite actual observations to track the performance of the model.   Maas et al. (1992) and 
Moran et al. (1995) utilized remotely sensed estimates of LAI and evapotranspiration as inputs to 
a simple alfalfa growth model.  The remotely sensed estimates were used to adjust the model’s 
parameters throughout the season using an iterative process.  They found the model performed 
best when remotely sensed observations were evenly distributed during the course of the growing 
season.  While all of these studies were focused on regional estimates of crop production, similar 
applications should be possible to describe field scale variability in crop development. 
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Figure 1:  High-resolution reflectance spectra for both a bare soil 
and a cotton canopy on different dates.  Measurements of green 
leaf area index (LAI) are shown for the dates the spectra were 
acquired. 
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Background on the CERES-Wheat Model 
 
 Several simulation models are available for wheat (e.g., Porter, 1984; Hammer et al., 
1987). CERES-Wheat (Ritchie and Otter, 1985) was selected for use because it is a process 
oriented model capable of simulating different management practices, while maintaining 
reasonable input requirements that would not prevent its application by a farm manager.  
Additionally, the model has been integrated as part of the Decision Support System for 
Agrotechnology Transfer (DSSAT, Hoogenboom et al., 1994), providing several tools with 
which to manipulate the model’s output for use in decision making.  Routines are included in the 
DSSAT package to link the model with a GIS (Papajorgji et al., 1994).  The model is capable of 
simulating plant response to environmental conditions, and soil-moisture and nitrogen 
availability.  Only the details relevant to the modifications made to the model are presented in the 
following discussion.   For additional information on the model see Ritchie and Otter (1985) and 
Ritchie (1991).  Jones and Kiniry (1986) provide extensive documentation for the CERES-Maize 
model. 
 
 The model’s prediction of crop phasic development is controlled primarily by a growing-
degree day approach as described by Ritchie (1991).  In general, when the accumulated growing-
degree days exceed a given threshold, a new growth phase begins.  The growth phases predicted 
by the model are included in Table 1, with a brief description of the threshold parameters. 
 

Table 1: Growth or management phases defined in CERES-Wheat 
 
Stage Growth Phase or Management Event Threshold Parameter 
 
 7 Fallow  -- 
 8 Sowing to germination Soil moisture a 
 9 Germination to emergence Sowing depth b 
 1 Emergence to terminal spiklet initiation PHINT c 
 2 Terminal spiklet to end of leaf growth 3*PHINT 
 3 End of leaf growth to end of preanthesis 
  ear growth 2*PHINT 
 4 End of preanthesis ear growth to 
  beginning of grain filling 200 oC-day 
 5 End of grain filling P5 d 
 6 End of grain filling to harvest -- 
 
a Germination (better defined as water imbibition) occurs in one day if there is sufficient soil moisture. 
b Thermal time required for emergence is equal to 40 + 10.2 * (sowing depth in cm) 
c PHINT is the interval of thermal time between leaf tip appearance (degree-days).  The length of stage 1 is 
also modified for vernalization and photoperiod requirements. 
d The threshold parameter for stage 5 is considered to be variety specific and can be modified by the user. 
 

Notice that the threshold parameters for stages 1 to 3 are all a function of a single parameter, the 
interval of time between leaf tip appearance (PHINT).  For stage 4, the model assumes a variety 
independent time period for stage 4 of 200 oC days.  To allow the model to have the capability of 
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simulating different wheat varieties, the model makes use of a cultivar file.  It is in that file that 
PHINT and P5 are defined, as well as other parameters that relate to grain filling rate and stem 
size. 
 
 LAI is a relatively important prediction in the CERES model.  It is used in the calculation 
of evapotranspiration rates and potential dry matter production.  In the growth subroutine, the 
potential dry matter production (PCARB, g per plant) is calculated as a function of planting 
geometry and LAI by: 
 
 

 PCARB SRAD
PltPop

Y LAI� � �148 1 1. ( exp( )) , (3) 

 
where, 

 Y
RowSp PltPop

1 15 0 768
0 01 2� �. .

( . )
, (4) 

 
SRAD is solar radiation (MJ m-2 d-1), PltPop is the number of plants per square meter, and 
RowSp is row spacing (m).  Equation 3 assumes 50% of total solar radiation is 
photosynthetically active and there is a radiation use efficiency of 2.96 g MJ-1.  If there is either 
water or nitrogen stress predicted, the potential dry matter production is decrease in proportion to 
the level of stress.  The partitioning of the total dry matter production in the plant to individual 
plant components (e.g., roots, stems, leaves, and grain) is primarily controlled by the predicted 
growth stage.  In stage 1, leaf mass is assumed to accumulate as a function of thermal time and 
then the remaining dry mass is partitioned to the roots, with certain exceptions for water or 
nitrogen limited conditions.  In stage 2, dry mass is first partitioned to the roots and stems and the 
remaining mass is used for leaf growth.  The later stages of development, more priority is given 
to development of the grain in the distribution of dry matter.  Further background on specific 
aspects of the model is discussed in the next section. 
 
 

Materials and Methods 
 
Model Modifications 
 
 The specific version of the model used in this study was Generic CERES 3.10, distributed 
with the DSSAT 3.1 software package (Tsuji et al., 1994).  The term “Generic” is an indication 
that the model contains subroutines that allow it to simulate maize, wheat, barley, millet, 
sorghum, and pasture grass.  The focus of this study is only on the wheat subroutines; however, 
the same principals should apply to the other crops considered by the model.   
 
The first modification made to the model was the creation of the WOBSLAI subroutine shown in 
Appendix A.  That subroutine is called at the end of the wheat growth subroutine only on days 
when there is a LAI observation.  On a daily basis, CERES does not define green plant area, but 
instead predicts total plant leaf area (PLA, cm2 per plant) and senescent plant leaf area (SENLA).  
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Green plant area is defined at the beginning of a growth stage as the difference between PLA and 
SENLA.  The subroutine first reads a file containing the observed LAI, and if available, 
senescent leaf area index.  Also included in the file are tolerance values for each measurement.  
In this study the tolerance values represent the standard error of the LAI observations; however, 
they could also represent a confidence interval about a regression line relating LAI to remotely 
sensed observations.  The index values are first converted to measures of plant leaf area using the 
plant population defined in the model.  Included in the subroutine are procedures for estimating 
senescent leaf area when these values are not provided; however, these procedures currently tend 
to provide inaccurate estimates of leaf weight and need further development.  Therefore, the 
emphasis of this presentation is the case when the amount of senescent leaf area is known. 
SENLA may not be easily determined by remotely sensed data directly; however, it could be 
estimated as the difference between the maximum observed LAI and the observed LAI on a later 
date for time periods after the end of leaf expansion. 
 
 After converting the index values to plant leaf area, it is determined if the SENLA is 
within the specified tolerance value.  If SENLA is within the tolerance value, no adjustments are 
made, otherwise the SENLA predicted by the model is set equal to the observed value.  Having 
modified SENLA, the difference in predicted PLA and SENLA is compared to the observed 
green plant area.  If the magnitude of this difference exceeds the tolerance value, PLA is set equal 
to the observed green plant area plus SENLA.  In this case, the total leaf area of the plant has 
been modified, and therefore leaf weight (LFWT, g per plant) is adjusted by: 
 

 LFWT =  LFWT +  PLA -  PLAOLD
AWR

, (5) 

 
where PLAOLD is the total plant leaf area before any adjustments were made (cm2 per plant) and 
AWR is the area to weight ratio of a leaf (cm2 g-1).  After stage 1, CERES assumes a constant 
value of 115 cm2 g-1 for AWR; however, for the wheat variety considered in this study, 
observations indicated a value of 200 cm2 g-1 was more appropriate.  Therefore, this value was 
used both in the WOBSLAI subroutine as well as in the main wheat growth subroutine of 
CERES.  In stage 1, AWR is assumed to vary as a function of thermal time using the equation: 
 
 AWR = 150 - 0.075 TDU, (6) 
 
where TDU is thermal development units (oC-day), which is approximately equivalent to 
accumulated growing degree days; however, TDU has been modified to account for the effects of 
vernalization and photoperiod.  In order to provide continuity between stages 1 and 2, the 
constant of 150 in equation 6 was replaced by the value 250.  Treating AWR as a variety 
independent parameter does not appear to be appropriate, and consideration to adding this 
parameter to the user defined cultivar file would be appropriate for future versions of the model. 
 
 It was also determined that modifying LAI alone would not be sufficient if there were 
errors in the predicted growth stage of the crop.  For example, if LAI observations indicate that 
leaf development is still occurring and the model predicts the crop has entered stage 3, the model 
will allow no further leaf development.  While the LAI could be corrected for the day of 
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observation, the model would still not predict any further leaf development.  To allow some 
method to correct for such a case, a subroutine was created called CHKPHEN, as shown in 
Appendix B.  The subroutine allows the user to define a specific date or ranges of dates in which 
a transition between growth stages must occur.  The dates can be defined based on the user’s 
knowledge of the current growth stage of the plant or some stages can be defined based on 
temporal trends in the RVI (to be discussed).  The routine is called from CERES phenology 
subroutine, immediately before the point at which the model considers whether or not transition 
should occur to a new growth stage.  While it may not be possible to define all of the growth 
stages based on remotely sensed data, the ability to control the end of stages 9, 1, 2, 3, 4 and 5 
was added.  In addition to accounting for calibration errors, the user control of the growth stages 
is also necessary for conditions of extended water or nitrogen stress, as the model will not 
account for increased development rates under these conditions. 
 
 When the CHKPHEN subroutine is called, the accumulated growing-degree days 
(SOMEDT) and the appropriate threshold parameter are passed to the routine.  If based on the 
dates provided by the user, a change in growth stage should occur and SOMEDT has not exceed 
the threshold parameter, the threshold parameter is set equal to (SOMEDT - 1).  Similarly, if 
SOMEDT has exceeded the threshold parameter and a change in growth stage should not occur, 
the threshold parameter is set to (SOMEDT+1).  If there are no constraints on the growth period, 
or the simulation time period falls between a user specified range, no adjustments are made to the 
threshold parameter. 
 
 
Evaluation Data Set 
 
 The modifications made to the model were evaluated using a wheat growth data set 
collected during the wheat Free Air Carbon Dioxide Enrichment (FACE) experiments conducted 
in Maricopa, Arizona.  Kimball et al. (1995) and Pinter et al. (1996) provide details of the 
experimental procedures and setup.  Three seasons of growth data are used in the evaluation.  In 
each year a hard red spring semi-dwarf wheat (Triticum aestivum L. cv. Yecora Rojo) was 
planted at a 0.25 m row spacing.  One treatment always corresponded to plots exposed to 
elevated CO2 concentrations.  Additional treatments included two irrigation levels in first two 
seasons and 2 nitrogen levels in the second season.  The total treatment levels are shown in Table 
2.  While the CERES model does have the ability to simulate plant response to elevated CO2 
levels, the focus of this evaluation will only be on the irrigation and nitrogen treatments. 
 
 Destructive plant sampling from each of the treatments began each season soon after 
emergence and continued through crop maturity.  Treatments were sampled by taking 3 plants 
per row for 2 rows in each repetition.  Once harvested, fresh and dry weights were obtained and 
both green and brown leaf area indexes determined using a Li-Cor model 3100 area meter. 
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Table 2: Irrigation and nitrogen treatment totals for the evaluation data set. 
 
              Treatment 
      Wet  Dry 
 Experiment Irrigation (mm)             
 1992-93    919   592  
 1993-94    629      287  
    
      High     Low 
 Nitrogen  (kg/ha)   
 1995-96    350        70 
 

 
 
Simulation Techniques 
 
 The first step in the simulation process was to determine the appropriate cultivar 
parameters to use to represent Yecora Rojo.  As a starting point, six spring wheat cultivars 
included with the model were simulated for the wet irrigation treatments with the 1992-3 and 
1993-4 data.   Of the cultivars evaluated, the one providing the best overall simulation results 
(predicted leaf, stem, LAI and grain weights to observed data during the season) for the 1992-93 
data set was selected.  The parameters for this cultivar where then adjusted to provide a better 
predictions for the 1993-94 data set, as it was difficult to determine cultivar parameters that 
provided reasonable results in both years.  Simulations were then conducted using both of these 
cultivar parameter sets for each year, both with and without adjustment of LAI values.  In the 
case when LAI was adjusted, observations were available at a seven to ten day interval between 
emergence and maturity.  The only limits placed on the growth stage were the transition from 
stage 2 to 3 and from 5 to 6, as these stages have potential to be determined from remotely sensed 
estimates (to be discussed).  The stages were specified to occur within a 10 day time period, 
centered on the day they were observed.  The range of 10 days was selected, as it represents what 
could be inferred from weekly satellite or aircraft observations.  The primary goal of these 
simulations was to determine the effectiveness of the modifications in accounting for improper 
model calibration. 
 
 Additional simulations were conducted using only the Yecora Rojo cultivar parameters to 
determine the use of observed LAI to correct for inaccurate input data.  In the first test, the leaf 
area index values corresponding to either the wet or high nitrogen treatments were used as an 
input the model when the dry or low nitrogen conditions were simulated.  Similarly, the leaf area 
index values corresponding to either the dry or low nitrogen treatments were input to the model 
when the wet or high nitrogen conditions were simulated. 
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Remotely Sensed Data 
 
 Remotely sensed data was also collected during the FACE experiment using a hand-held 
Exotech radiometer.  The data collection techniques used to process the radiometer data and 
convert it to units of reflectance (ratio of reflected radiance at the radiometer to incident 
radiation) is described by Pinter et al. (1994).  Data collected for the wet treatments during the 
1993-94 season are currently used to illustrate the relationship between near-infrared and red 
reflectance with LAI.  Future work will be aimed at using LAI estimates derived from this data 
with the model. 
 
 During the 1995-96 experiment, Datron/Transco Inc. provided an image of the field in the 
blue, red, green and NIR portion of the spectrum using aircraft mounted digital cameras.  The 
image spatial resolution was approximately 2 m and was acquired on March 31, 1995, 
approximately 10 days after maximum canopy cover had been reached.  The data were used to 
generate a RVI map of the field.  Additional, supervised classification of the image was used to 
group different areas of the field into LAI classes.  The classification was done using a maximum 
likelihood classifier with Erdas Imagine 8.1 image processing software.  The training data for the 
classification procedure was obtained by using measured LAI of the plots sampled near the time 
of the over flight.  Yield predictions were made for the various LAI classes obtained in the 
images using the modified CERES model. 
 
 

Results and Discussion 
 
Remotely Sensed Estimates of LAI 
 
 Note, the primary objective in presenting the results in this section is to demonstrate the 
capabilities of multispectral techniques to quantify and map trends in LAI.  Further work will be 
conducted to determine the significance of errors in the estimates to the application in growth 
models.  Temporal trends in both LAI and RVI are shown in Figure 2.  Note that without any 
calibration, the temporal trends of LAI and RVI are much the same.  From the figure, it can be 
seen where remotely sensed data could be used to place limits on the occurrence of wheat growth 
stages.  An upper limit on the time of emergence could be determined by noting the time period 
when the RVI values begin to consistently increase.  The end of leaf development corresponds to 
the time when the RVI values reach a maximum.  Maturity can also be determined by noting 
when the RVI values reach a minimum at the end of the season.  There is some hysterisis in the 
relationship, as the RVI values are relatively higher for the same LAI values during crop 
development compared to the values once senescence has begun.  The large drop in the RVI 
value near day 70 is due to cloud cover and wet soil conditions during the time of measurement.  
Using least squares linear regression for the data shown in figure 1 with RVI as the independent 
variable, the standard error of the regression relationship with LAI was 0.92, with a coefficient of 
determination (r2) of 0.88.  A regression relationship between LAI and RVI will typically hold 
between seasons if the same field, planting geometry and crop variety are maintained. 
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 Both the RVI and LAI classification maps generated from the aircraft-based images taken 
during the 1995-96 experiment are shown in Figure 3.  There is a great deal of similarity in the 
patterns of both maps, with the LAI map appearing coarser due to the limited number of classes 
used.   The rings that appear in the images are due to the pipe for the air handling system around 
the treatment plots.  The horizontal bands of consistently higher RVI levels splitting the rings 
correspond to the high nitrogen treatments applied during this experiment.  As the different 
nitrogen treatments started at the beginning of the season, the wheat in the high nitrogen 
treatments had consistently higher LAI values by the time this image was taken. The areas 
between the rings that tend to have lower RVI values correspond to strips between the treatment 
areas that were planted at a wider row spacing and had a less dense network of drip tubing (1 m 
spacing versus a 0.5 m spacing in the treatment areas). 
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Figure 3: Maps derived from the March 31, 1996 image data (a) RVI and (b) LAI classification. 
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Figure 2: RVI and LAI versus time for the wet treatment of the 1993-94 
growing season. 
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Simulation Results  
 
 The two cultivar parameter sets used in this evaluation are shown in Table 3.  Also 
included in the table is a brief definition of the parameters.  Note that the only two parameters 
that differ between the cultivar  definitions are the sensitivity of the crop to photoperiod (P1D) 
and the leaf tip appearance rate (PHINT).  A large value for PHINT was needed in order to slow 
down the predicted development of the crop in the early season.  Part of the problem may be that 
the model is basing its growth stage on air temperature; however, in the arid climate of Arizona, 
the crop and soil can be several degrees cooler than the air.  Further investigation is planned to 
determine if this is indeed the case. 
 

Table 3: Cultivar parameters used in this evaluation 
 
         Cultivar      . 
 ID  Description Condo Yecora  
 
 P1V Sensitivity to vernalization 0.5 0.5 
 P1D Sensitivity to photoperiod 1.5 2.0 
 P5 Relative grain filling duration 2.0 2.0 
 G1 Kernel number per unit weight of stem (g-1) 5.3 5.3 
 G2 Optimal kernel filling rate  1.9 1.9 
 G3 Nonstressed dry stem weight (g) 1.9 1.9 
 PHINT Leaf tip appearance rate 95 120 
 AWR* Leaf area to weight ratio 200 200 
 
* AWR is typically not a user defined variable, but the model assumes a constant value of 115 in stage 2.  In 
this study, the value was modified within the source code of the model. 
 

 
 Predicted and observed LAI and grain weights are shown for the wet treatments of the 
1992-93 and 1993-94 experiments in Figures 4 and 5.  Figure 6 provides the same data for the 
1994-95 experiment for the high nitrogen treatment.  Four different predictions are shown in each 
chart.  Two sets of predictions correspond to simulations using the two sets of cultivar 
parameters included in Table 4, without modifying LAI predictions.  The other predictions 
shown again correspond to the two different cultivar parameters; however, in this case the LAI 
predictions have been forced to match observations, and limits have been placed on the time 
periods in which growth stages 2 and 5 can end. 
 
 The predicted yield results indicate that often the LAI adjustments actually increased the 
error in predicted yield in some cases, particularly when the Condo parameters were used during 
the 1993-94 and 1995-96 growing seasons.  In these cases adjustment to match the LAI 
observations resulted in an over prediction of final yield.  Part of this over prediction is a result of 
the fact that in these simulations no limits were placed on the transition from stage 1 to 2.  For 
the Condo parameters, stage 1 occurs earlier than with the Yecora parameters, which result in 
stem  
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Figure 4: Observed and predicted leaf area index (a) and grain weight (b) for the 1992-93 
experiment.  In the legend captions, Yecora and Condo refer to predicted values using 
the Yecorra Rojo and Condo cultivar parameters.  ConFLAI and YecFLAI are the 
predicted values for the same cultivar parmeters when the predicted LAI values are forced 
to match observations. 
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Figure 5: Observed and predicted leaf area index (a) and grain weight (b) for the 1993-94 
experiment.  The same legend captions are used as in Figure 4. 
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Figure 6: Observed and predicted leaf area index (a) and grain weight (b) for the 1995-96 
experiment.  The same legend captions are used as in Figure 4. 
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growth beginning earlier in the season.  In the 1992-93 season, the Condo cultivar parameters 
resulted in a transition to stage 2 closer to the observed; however, in the other seasons, the same 
parameters predicted a much earlier transition to stage 2.  The overall effect was to increase the 
predicted time in stage 2, resulting in an increase in stem mass, and ultimately an increase in 
predicted yield.   
 
 The timing of growth stages also limited the performance of the modifications during the 
1992-93 growth season with the Yecora cultivar parameters.  Because stages 1 and 3 were 
predicted later than their observed occurrences, the beginning of grain fill was improperly 
predicted.  The adjustment of early season leaf area index for the Yecora parameters had no 
impact on the predicted yield when compared to the predicted yield without modification of LAI.  
In the other two experiments, modification of LAI when using the Yecora parameters also had a 
limited impact on yield.  For the 1993-94 season, the predicted LAI of the model without 
adjustment was close to the observed for most of the season with the exception of the time just 
prior to maturity.  At this point, the model over predicted the crop’s senescence rate, and 
therefore the adjustment of LAI resulted in a slight increase in grain production at the end of the 
season.  During the 1995-96 season, the unmodified model over predicted LAI during midseason, 
but provided accurate estimates at the beginning and end of the season.  The modification of LAI 
during the midseason did not have a very significant impact on predicted yield (Figure 6b). 
 
Correction of Input Errors 
 
 Table 4 shows the results of applying the observed leaf area index values as an attempt to 
correct for incorrect treatment information.  For most of the treatments simulated, the use of the 
observed LAI with the model did not result in complete agreement between observed and 
simulated conditions; however, the use of the LAI observations did improve all except the high 
nitrogen treatment of 1995-96.  In this case of ample nitrogen conditions, forcing a higher leaf 
mass increased nitrogen demand, and actually resulted in a lower yield than if the LAI values had 
not been increased.  For all of the experiments, simulating optimal conditions and accounting for 
treatment differences resulted in greater improvement than simulating less than optimal 
conditions and then trying to correct with LAI. 
 
 The predicted and observed yields corresponding to the LAI ranges in Figure 3(b) are 
provided in Table 5.  The use of one LAI observation and no adjustment to the growth stage did 
allow the model predict the range in observed yields to within 8%.  However, the image was 
taken at an optimal time period, during the time of grain filling, when the model predictions of 
yield appears to be most sensitive to changes in LAI.  Such predictions may useful as an 
alternative to yield mapping, but this does not provide the information needed earlier in the 
season when it is possible to change management practices. 
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Table 4: Application of the LAI modifications to correct input errors 
 
   Observed 
            Yield   %Diff              %Diff        Percent 
Years Treatment (kg/ha)           Wrong Trt a Cor LAI b   Improvement    
 
92-93   Wet  8369      -45      -34   11 
 Dry  5955        23        -3   20 
93-94 Wet  7436      -37      -23   14 
 Dry  4744       87       37   50 
95-96 High N  7400       13       17   -4 
 Low N  5773       62       48   15 
 
a Percent difference [100 (Predicted - Observed)/Observed] between observed and predicted yields when 
for example, dry conditions were simulated for the wet treatments. 
b Wrong conditions still simulated; however, the correct LAI information was provided. 
 
 
 
 

 
Table 5: Predicted and observed* wheat yields corresponding to the LAI 
classes of Figure 3(b). 
 
 LAI Class         Yield (kg/ha) 
 of Figure 3b. Observed Predicted Percent Difference  
 
 > 5.0 8000 7454 6.8 
 4.5 to 5.0 7500 7417 1.1 
 4.0 to 4.5 7000 7366 5.2 
 3.0 to 4.0 6500 7008 7.8 
 2.0 to 3.0 5700 6045 6.0 
 
* Observed is the approximate yield determined for the various treatments during the 1995-96 
experiment and have been assigned to an LAI class based on the LAI of that treatment during the 
time the image was acquired. 
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Conclusions and Future Plans 

 
 Based on studies in the literature and the sample data provided, remotely sensed estimates 
of LAI are feasible, assuming there are some ground-based observations to develop empirical 
relationships.  Additionally, temporal trends in RVI may be useful in identifying the time periods 
when key growth stages of wheat occur (emergence, end of leaf development and maturity).  
While there is a great deal of potential to integrate this information with growth models, the 
approach taken in this study still requires development.  If the model’s cultivar parameters do not 
provide correct predictions of the crops growth stage, knowledge of the occurrence of the three 
stages considered in this study (emergence, end of leaf growth, and maturity) are not sufficient to 
gain dependable predictions of final yield.   When the growth stages are properly predicted, the 
data sets evaluated in this study indicate the model’s prediction of final grain yield showed a 
greater sensitivity to changes in LAI during the end of the season, than during canopy 
development.  There is evidence that when there is uncertainty in actual field conditions, the 
most accurate predictions can be obtained by simulating optimal conditions and then use the 
observed LAI to account for limiting conditions. 
 
 Future work will focus on the application of iterative techniques to adjust the model’s 
predictions to match observed LAI.  It is hoped that by using an iterative procedure to adjust key 
growth parameters, observations early in the season will have a greater impact on predicted 
yields.  An iterative technique may also reduce the number of LAI observations needed to 
achieve accurate results in the model’s predictions.  One logical parameter to interpolate would 
be PHINT, as it is related to the leaf growth rate and also serves as a basis to determine the 
transition between three of growth stages considered by the model.  Consideration will also be 
given to integrating remotely sensed estimates of evapotranspiration (ET) with the model.  
Through the combination of LAI and ET observations, it may be possible to determine if any 
departure in the model from observed conditions is related to its growth or soil parameters.  
Additional investigation will also be conducted to determine if the use of air temperature in 
driving the model’s transition between growth stages is responsible for the different response in 
growth stage development seen for 1992-93 growing season.  Results from the FACE experiment 
conducted during the 1996-97 growing season will also be added to the evaluation data set. 
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Appendix A: WOBSLAI Subroutine 
 
C==================================================================== 
C  WOBSLAI, Subroutine (wobslai.for) 
C 
C  Options to adjust LAI for wheat based on observations. 
C-------------------------------------------------------------------- 
C  Revision history 
C 
C  1. Written                                                 1-10-97 
C-------------------------------------------------------------------- 
C  INPUT  : AWR, USENLA, PLTPOP, PLA, SENLA, LAI, LFWT, IOBLAI 
C 
C  LOCAL  : ADDPLA, OBGPLA, PLAOLD, LAITOL, SENTOL 
C 
C  OUTPUT : PLA, SENLA, LAI, LFWT 
C-------------------------------------------------------------------- 
C  Called : WGROSUB 
C 
C  Calls  :  
C-------------------------------------------------------------------- 
C                         DEFINITIONS 
C 
C  ADDPLA : Plant leaf area to be added as a result of the subroutine 
C  AWR    : Area to weight ratio (square cm/g) * 
C  IOBLAI : DOY for next LAI observation 
C  IPLAOK : Switch used in tolerance checks 
C  LAI    : Leaf area index 
C  LAITOL : Leaf area index tolerance 
C  LFWT   : Leaf weight 
C  LFSKIP : Switch used in determining when to read the file 
C  OBGPLA : Observed green plant area (square cm/plant) 
C  OBLAI  : Observed green leaf area index 
C  OBSEN  : Observed senescent LAI 
C  PLA    : Total plant leaf area (square cm / plant) 
C  PLAOLD : Plant leaf area before adjustments are made. 
C  PLTPOP : Plant population * 
C  SENLA  : Senescent leaf area 
C  SENOLD : Senescent leaf area prior to modifications 
C  SENTOL : Tolerance for senescent leaf area 
C  USENLA : Unstressed senescent plant leaf area (square cm/plant) 
C           Defined in wheat growth subroutine. 
C 
C  * = variables that are used in this subroutine, but are not 
C      modified 
C==================================================================== 
 
      SUBROUTINE WOBSLAI (AWR, USENLA, PLTPOP, PLA, SENLA, LAI, LFWT, 
     +                    IOBLAI) 
                  
      IMPLICIT NONE 
      INTEGER   IOBLAI, IPLAOK, LAIDOY 
      REAL      AWR, ADDPLA, LAI, LAITOL, LFWT,   
     +          OBGPLA, OBLAI, OBSEN, PLA, PLAOLD, PLTPOP, 
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     +          SENLA, SENOLD, SENTOL, USENLA 
C 
      PLAOLD = PLA 
      SENOLD = SENLA 
C 
C-------------------------------------------------------------------- 
C Begin adjustments if there is an observation for this day. 
C-------------------------------------------------------------------- 
C 
C Note, file unit 53 is opened in the main program. 
C IOBLAI is initialized as the first DOY observations are in the  
C file. 
C 
      READ(53, 253) LAIDOY, OBLAI, OBSEN, LAITOL, SENTOL, IOBLAI 
C 
C Convert observed LAI to green plant leaf area and tolerance. 
C 
      OBGPLA = OBLAI/(PLTPOP*0.0001) 
      LAITOL = LAITOL/(PLTPOP*0.0001) 
C 
C See if the observed and predicted are within defined tolerance. 
C 
      IPLAOK = 1 
      IF( ABS(OBGPLA - (PLA-SENLA)) .GT. LAITOL) IPLAOK = 0 
C 
C If there are observations of senescent LAI, then SENLA is 
C adjusted if the predicted and observed exceed the tolerance 
C value.  If the green plant area is also out of tolerance, 
C adjust leaf weight as well. 
C 
      IF (OBSEN .GE. 0.0) THEN 
         OBSEN = OBSEN/(PLTPOP*0.0001) 
         SENTOL = SENTOL/(PLTPOP*0.0001) 
C 
C Adjust SENLA if it is out of tolerance. 
C 
         IF (ABS(OBSEN - SENLA) .GT. SENTOL) THEN 
            SENLA = OBSEN 
         ENDIF 
C 
C Also adjust PLA if it was or is now out of tolerance. Leaf 
C weight is only adjusted if the total plant leaf area is changed. 
C 
         IF ( ABS(OBGPLA - (PLA - SENLA)) .GT. LAITOL) THEN 
            PLA = OBGPLA + OBSEN 
            LFWT = LFWT + (PLA - PLAOLD)/AWR 
         ENDIF 
         LAI = OBLAI 
C 
C Following lines are executed if there is not observations of 
C SENLA available. 
C  
      ELSEIF (IPLAOK .EQ. 0) THEN  ! Observed SENLA not available 
C 
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C Begin adjustments if outside tolerance. 
C 
C Only leaf growth occurs in stages 1 and 2.  Therefore, it is 
C most likely that any under prediction of plant leaf area is due 
C to under prediction of growth.  Reset PLA to the observed green 
C plant area plus unstressed senescent leaf area. 
C 
         IF (OBGPLA .GT. PLA) THEN 
            PLA = OBGPLA + USENLA 
            SENLA = USENLA 
            LFWT = LFWT + (PLA - PLAOLD)/AWR 
          ELSEIF ( OBGPLA .GT. (PLA - SENLA) ) THEN 
C 
C If the green leaf area is under predicted, then either SENLA is 
C over predicted or PLA is under predicted or both. 
C First see if there has been an increase in SENLA due to stress. 
C If possible, make up the difference by only adjusting SENLA. 
C 
             ADDPLA = OBGPLA - (PLA - SENLA) 
             IF( ADDPLA .LT. (SENLA - USENLA)) THEN 
                SENLA = SENLA - ADDPLA 
             ELSE 
               PLA = OBGPLA + USENLA 
               SENLA = USENLA 
               LFWT = LFWT + (PLA - PLAOLD)/AWR 
             ENDIF !ADDPLA 
C 
C Over prediction [i.e.,  OBGPLA < (PLA-SENLA) ] 
C Assume that the SENLA has been under predicted. 
C 
         ELSE 
           SENLA = PLA - OBGPLA 
         ENDIF 
C 
C Update other related variables. 
C 
 
         LAI = OBLAI 
      ENDIF ! PLA adjustment. 
C 
C     Report changes in output file - WLAI.OUT - opened in main 
C 
      WRITE(54, 254) LAIDOY, PLAOLD, PLA, SENOLD, SENLA, IPLAOK 
       
      RETURN 
C 
C-------------------------------------------------------------------- 
C     Format Strings 
C------------------------------------------------------------------- 
C Format for input of observed data 
253   FORMAT(I5,1X,F6.3,1X,F6.3,1X,F6.3,1X,F6.3,1X,I5) 
C Format for output file. 
254   FORMAT('LAI: 'I5,1X,F7.1,1X,F7.1,1X,F7.1,1X,F7.1,1X,I3) 
      END 
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Appendix B: CHKPHEN Subroutine 
 
C======================================================================= 
C  CHKPHEN, Subroutine 
C 
C  Checks phenology based on user supplied data 
C----------------------------------------------------------------------- 
C  Revision history 
C 
C  1. Written                                                 2-15-97 
C----------------------------------------------------------------------- 
C  INPUT  : PHLIMIT, SOMEDT, SOMEP, ISTAGE 
C 
C  LOCAL  : CHGSTG 
C 
C  OUTPUT : SOMEP 
C----------------------------------------------------------------------- 
C  Called : PHENOL 
C 
C  Calls  :  
C----------------------------------------------------------------------- 
C                         DEFINITIONS 
C 
C  PHLIMIT: Array containing day of year limits for growth stages 
C           9 x 3, Each row is a stage with minimum and maximum or 
C                  actual day of year at which stage changes. * 
C  SOMEDT : Degree days or total thermal units * 
C  ISTAGE : Crop stage * 
C  SOMEP  : The threshold parameter which determines if a new stage should 
C           begin 
C  CHGSTG : Code to determine if user limits have been reached: 
C            = -1, no data or OK to change, but not forced 
C            =  0, the growth stage should not change 
C            =  1, the growth stage must change 
C  YRDOY  : Year and day of year (i.e., 96365)* 
C  * = variables that are used in this subroutine, but are not 
C      modified 
C======================================================================= 
 
      SUBROUTINE CHKPHEN (ISTAGE, YRDOY, PHLIMIT, SOMEDT, SOMEP) 
                  
      IMPLICIT NONE 
      INTEGER   PHLIMIT(9,3), ISTAGE, YRDOY, CHGSTG 
      REAL      SOMEDT, SOMEP 
C 
C See if the user has supplied a specific date on which this stage should 
C be changed. 
C 
      CHGSTG = -1 !Initialize 
 
      IF ( PHLIMIT(ISTAGE, 3) .NE. -999) THEN ! A 
        IF ( PHLIMIT(ISTAGE, 3) .EQ. YRDOY ) THEN ! B 
           CHGSTG = 1 
        ELSE 
           CHGSTG = 0 
        ENDIF ! B 
      ELSE ! See if a range is provided - A 
        IF ( ( PHLIMIT(ISTAGE,1) .NE. -999 ) .AND. ( PHLIMIT(ISTAGE,2) 
     +        .NE. -999) ) THEN ! C 
C 
C         Don't allow a change in growth stage if we have not reached 
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C         the minimum user specified limit. 
C 
          IF (YRDOY .LT. PHLIMIT(ISTAGE,1) )THEN ! d 
            CHGSTG = 0 
C         If passed the user specified limit, must change the stage 
          ELSEIF (YRDOY .GT. PHLIMIT(ISTAGE,2) )THEN 
            CHGSTG = 1 
          END IF !D                       
        ENDIF !C 
      ENDIF ! A 
C 
C If the model is not agreeing with the user specified conditions, 
C adjust the growth parameter to gain the desired result 
C 
C     Model says change, but user says not to enter the next stage 
      IF ( (CHGSTG .EQ. 0) .AND. (SOMEDT .GT. SOMEP) ) THEN !e 
        IF(ISTAGE.NE.1) THEN 
          SOMEP = SOMEDT + 1.0 
        ELSE 
          SOMEP = 95.0*SOMEDT/400.0 + 1.0 
        ENDIF 
C     Model says not time to change, but user says it is. 
      ELSEIF ( (CHGSTG .EQ. 1) .AND. (SOMEDT .LT. SOMEP) ) THEN 
        IF(ISTAGE.NE.1) THEN 
          SOMEP = SOMEDT - 1.0 
        ELSE 
          SOMEP = 95.0*SOMEDT/400.0 - 1.0 
        ENDIF 
 
      ENDIF !e 
C 
C Give some output that will help determine appropriate parameters 
C   Only output if a stage change is occurring. 
C 
      IF( (SOMEDT .GT. SOMEP) .AND. (ISTAGE .NE. 1) )THEN 
        WRITE(54, 255)  YRDOY, ISTAGE, SOMEP, SOMEDT, CHGSTG 
      ELSEIF ( (95.0*SOMEDT/400.0) .GT. SOMEP) THEN 
        WRITE(54, 255)  YRDOY, ISTAGE, SOMEP, SOMEDT, CHGSTG 
      ENDIF 
C 
      RETURN 
C 
C----------------------------------------------------------------------- 
C     Format Strings 
C----------------------------------------------------------------------- 
C 
C Format for output file. 
255   FORMAT(I5,1X,I2,1X,F9.3,1X,F9.3,1X,I2) 
C 
      END 
 


